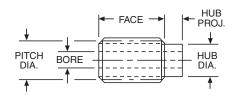

WORMS AND WORM GEARS

12 DIAMETRAL PITCH BRONZE AND CAST IRON WORM GEARS STEEL WORMS – UNHARDENED AND HARDENED



STANDARD TOLERANCES

DIMEN	TOLERANCE	
BORE	All	±.0005

WORM LEAD and LEAD ANGLE

	SINGLE	DOUBLE	QUAD
LEAD	.2618"	.5236"	1.0472"
LEAD ANGLE	4°46′	9°28′	18°26′

REFERENCE PAGES

Alterations — 149 Horsepower Ratings — 85, 86 Lubrication — 149 Materials — 150 Selection Procedure — 84

BOSTON GEAR®

78

PRESSURE ANGLE – 141/2°

RATIO = Gear Teeth \div Worm Threads RH = RIGHT HAND — LH = LEFT HAND All others stocked RIGHT HAND ONLY.

ALL DIMENSIONS IN INCHES
ORDER BY CATALOG NUMBER OR ITEM CODE

12 DIAMETRAL PITCH				WORM GEARS		FACE = .500" *CENTER LINE WORM TO FLUSH END = .250"						
No.			Hub		Style See	SINGLE Thread		DOUBLE Thread		QUAD Thread		
of Teeth	Pitch Dia.	Boro	Dia	Droi	Page 150	Catalog Number	Item Code	Catalog Number	Item Code	Catalog Number	Item Code	
reem										Coue		
BRONZE												
12	1.000	.5625		.62		_	-	-	-	QB1212 [†]	13762	
16	1.333	.6875		.62	Α	-	-	-	-	QB1216 [†]	13764	
20	1.667	.500 .500	1.25	.50 .62		GB1050A GB1051	13626 13628	DB1400	13714	DB1600	13766	
30	<mark>2.500</mark>	.750	<mark>1.1</mark> 9	.62		-	-	 DB1401A	<u>13716</u>	 DB1601A		
10		.625		.62		GB1052A	13630	-	<u>–</u>	-	-	
40	3.333	.750	1.44	.62	В	-	_	DB1402A	13718	DB1602A	13770	
50	4.167	.625	1.44	.62		GB1053A	13632	-	-	-	-	
50	4.107	.750	1.44	.62		-	-	DB1403A	13720	DB1603A	13772	
60	5.000	.625 .750	1.69	.62 .62		GB1260A -	13634 -	_ DB1260A	_ 13722	_ QB1260A	_ 13774	
80	6.667	.625	1.94	.75	С	GB1054	13636	-	-	-	-	
100	8.333	.750	1.94	.75	U	GB1055	13638	-	-	-	-	
						CAST IF	RON					
20	1.667	.500	1.25	.50	А	G1050ARH G1050ALH	13110 13112	D1400RH D1400LH	13260 13262	D1600	13352	
30	2.500	.500	1.19	.62		G1051RH G1051LH	13114 13116	-	-	-	-	
30	2.500	.750	1.19	.62		-	-	D1401ARH D1401ALH	13264 13266	D1601A	13354	
40	3.333	.625	1 4 4	1.44	.62		G1052ARH G1052ALH	13118 13120	-	-	-	-
-10	0.000	.750	1.44	.62	в	-	-	D1402ARH D1402ALH	13268 13270	D1602A	13356	
50	4.167	.625	1.44	.62		G1053ARH G1053ALH	13122 13124	-	-	-	-	
00	1.107	.750	1.74	.62	62	-	-	D1403ARH D1403ALH	13272 13274	D1603A	13358	
60	5.000	.625	1.69	.75		G1260RH G1260LH	13126 13128	-	-	-	-	
		.750				_	—	D1260A	13276	Q1260A	13360	
80	6.667	.625	1.94	.75		G1054	13130	-	-	-	-	
100	8.333	.750 .750	1.94	.75	С	_ G1055	- 13134	D1404 -	13278		-	
100	0.000	.750	1.94	.75	U	G1055	13134	-	_	-	-	

12 WORMS FOR ABOVE GEARS DIAMETRAL PITCH										
		Hub		SINGLE Thread		DOUBLE Thread		QUAD Thread		
Pitch Dia.	Face	Bore	Dia.	Proj.	Catalog Number	Item Code	Catalog Number	Item Code	Catalog Number	Item Code
UNHARDENED – STEEL										
	1.125	.625	_	-	-	-	D1407KRH [‡] D1407KLH [‡]	12806 12808	D1607KRH [‡] D1607KLH [‡]	12822 12824
1.000	1.625	.625	-	-	_	-	L1407 [‡]	12912	-	-
1.000	1.025	.500	-	-	L1056 [‡]	12900	-	-	-	-
	<mark>1.125</mark>	<mark>.500</mark>	<mark>.75</mark>	<mark>.38</mark>	GH1056RH GH1056LH	12884 12886	DH1407RH DH1407LH	<mark>12838</mark> 12840	DH1607 -	12854 _
	HARDENED – STEEL									
	1.125	.625	-	-	-	-	H1407RH [‡] H1407LH [‡]	12980 12982	H1607‡ _	12996 _
1 000	1 005	.625	-	-	_	-	HL1407 [‡]	13018	_	-
1.000 1.625	.500	-	-	HL1056 [‡]	13006	-	-	-	-	
	1.125	.500	-	-	H1056RH [‡] H1056LH [‡]	12962 12960		- -		- -

†.750" Face, Center Line Worm to Flush End = .375"

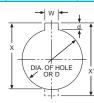
+ Furnished with .125" Keyway. Hardened Worms have ground and polished threads.

GENERAL

MATERIALS

Boston Gear stock steel gears are made from a .20 carbon steel with no subsequent treatment. For those applications requiring increased wearability. Case-hardening produces a wear resistant, durable surface and a higher strength core. Carburizing and hardening is the most common process used. Several proprietary nitriding processes are available for producing an essentially distortion-free part with a relatively shallow but wear-resistant case. Boston stock worms are made of either a .20 or .45 carbon steel. Selection of material is based on size and whether furnished as hardened or untreated.

Stock cast iron gears are manufactured from ASTM-CLASS 30 cast iron to Boston Gear specifications. This provides a fine-grained material with good wear-resistant properties.


Bronze worm and helical gears are produced from several alloys selected for bearing and strength properties. Phosphor bronze is used for helicals and some worm gears (12P and coarser). Finer pitch worm gears are made from several different grades of bronze, dependent on size.

Non-metallic spur Gears listed in this Catalog are made from cotton reinforced phenolic normally referred to as Grade "C."

Plastic Gears listed are molded from either ${\sf Delrin}^{\circ},$ Acetal or ${\sf Minlon}^{\circ}.$

STANDARD KEYWAYS AND SETSCREWS

	Stand	dard	Recommended
Diameter of Hole	W	d	Setscrew
5/16 to 7/16"	3/32"	3/64"	10-32
1/2 to 9/16	1/8	1/16	1/4-20
5/8 to 7/8	3/16	3/32	5/16-18
15/16 to 1-1/4	1/4	1/8	3/8-16
1-5/16 to 1-3/8	5/16	5/32	7/16-14
1-7/16 to 1-3/4	3/8	3/16	1/2-13
1-13/16 to 2-1/4	1/2	1/4	9/16-12
2-5/16 to 2-3/4	5/8	5/16	5/8-11
2-13/16 to 3-1/4	3/4	3/8	3/4-10
3-5/16 to 3-3/4	7/8	7/16	7/8-9
3-13/16 to 4-1/2	1	1/2	1-8
4-9/16 to 5-1/2	1-1/4	7/16	1-1/8-7
5-9/16 to 6-1/2	1-1/2	1/2	1-1/4-6

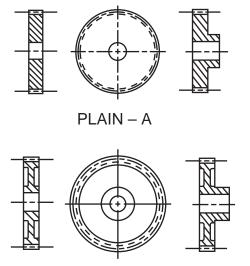
FORMULA:

 $X = \sqrt{(D/2)^4 - (W/2)^4} + d + D/2$

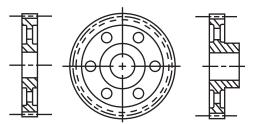
X' = 2X - D

EXAMPLE:

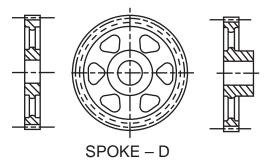
Hole 1"; Keyway 1/4" wide by 1/8" deep.


X= 1(1/2)⁴-(1/8)⁴+1/8+1/2=1.109"

X' = 2.218 - 1.000 = **1.218**"


BOSTON GEAR®

STYLES


Boston Spur, Helical, and Worm Gears are carried in Plain, Web, or Spoke styles, as illustrated.

WEB WITH LIGHTNING HOLES – C

ENGINEERING INFORMATION

HOW TO FIGURE HORSEPOWER AND TORQUE

TO OBTAIN	HAVING	FORMULA	
Velocity (V) Feet Per Minute	Pitch Diameter (D) of Gear or Sprocket – Inches & Rev. Per Min. (RPM)	V = .2618 x D x RPM	
Rev. Per Min. (RPM)	Velocity (V) Ft. Per Min. & Pitch Diameter (D) of Gear or Sprocket—Inches	$RPM = \frac{V}{.2618 \times D}$	
Pitch Diameter (D) of Gear or Sprocket — Inches	Velocity (V) Ft. Per Min. & Rev. Per Min. (RPM)	D = <u>V</u>	
Torque (T) In. Lbs.	Force (W) Lbs. & Radius (R) Inches	T = W x R	
Horsepower (HP)	Force (W) Lbs. & Velocity (V) Ft. Per Min.	$HP = \frac{W \times V}{33000}$	
Horsepower (HP)	Torque (T) In. Lbs. & Rev. Per Min. (RPM)	$HP = \frac{T \times RPM}{63025}$	
Torque (T) In. Lbs.	Horsepower (HP) & Rev. Per Min. (RPM)	T = <u>63025 x HP</u> RPM	
Force (W) Lbs.	Horsepower (HP) & Velocity (V) Ft. Per Min.	$W = \frac{33000 \times HP}{V}$	
Rev. Per Min. (RPM)	Horsepower (HP) & Torque (T) In. Lbs.	RPM = <u>63025 x HP</u> T	

POWER is the rate of doing work.

WORK is the exerting of a FORCE through a DISTANCE. ONE FOOT POUND is a unit of WORK. It is the WORK done in exerting a FORCE OF ONE POUND through a DISTANCE of ONE FOOT.

THE AMOUNT OF WORK done (Foot Pounds) is the FORCE (Pounds) exerted multiplied by the DISTANCE (Feet) through which the FORCE acts.

THE AMOUNT OF POWER used (Foot Pounds per Minute) is the WORK (Foot Pounds) done divided by the TIME (Minutes) required.

POWER (Foot Pounds per Minute) = WORK (Ft. Lbs.) TIME (Minutes)

POWER is usually expressed in terms of HORSEPOWER.

HORSEPOWER is POWER (Foot Pounds per Minute) divided by 33000.

HORSEPOWER (HP) = $\frac{POWER (Ft. Lbs. per Minute)}{33000}$

- WORK (Ft. Pounds)
- 33000 x TIME (Min.)
- = FORCE (Lbs.) x DISTANCE (Feet) 33000 x TIME (Min.)
- FORCE (Lbs.) x DISTANCE (Feet) 33000 x TIME (Min.)

Cut on Dotted Lines and Keep for Quick Reference

APPLICATIO	ON FORMULAS
1 hp = 36 lb-in. @ 1750 rpm 1 hp = 3 lb-ft. @ 1750 rpm	$OHL = \frac{2 TK}{D}$
$hp = \frac{Torque (lbin.) \times rpm}{63,025}$	OHL = Overhung Load (lb) T = Shaft Torque (lb-in.)
hp = $\frac{\text{Force (lb) x Velocity (ft/min.)}}{33,000}$	D = PD of Sprocket, Pinion or Pulley (in.) K = Overhung Load Factor
Velocity (ft/min.) = 0.262 x Dia. (in.) x rpm Torque (lbin) = Force (lb) x Radius (in.)	Overhung Load Factors: Sprocket or Timing Belt1.00
Torque (lbin.) = $\frac{hp \times 63,025}{rpm}$	Pinion & Gear Drive
Mechanical = <u>Output hp</u> x 100% Efficiency =Input hp	Pulley & Flat Belt Drive2.50 Variable Pitch Pulley3.50 kW = hp x 0.7457
Output hp = $\frac{OT (lb-in.) \times Output rp}{63,025}$	in. = mm/25.4 Temp. °C = (°F - 32) x 0.556
OT = Input Torque x Ratio x Efficiency OT = Output Torque	Temp. °F = (°C x 1.8) + 32 Torque (lb-in.) = 86.6 x kg•m
Output rpm = <u>Input rpm</u> Ratio	Torque (lb-in.) = 8.85 x N•m Torque (lb-in.) = 88.5 x daN•m
<u> </u>	
ILLUSTRATION	OF HORSEPOWER
FORCE (W) F = 33,000 LBS.	ORCE (W) 1000 LBS. 1000 LBS
LÉS. ↓ ↓ ↓ DISTANCE = TIME = 1 M	1 FT ↓ DISTANCE = 33 FT. IIN TIME = 1 MIN.
$HP = \frac{33,000 \times 1}{33,000 \times 1} = 1 HP$	$HP = \frac{1000 \times 33}{33,000 \times 1} = 1 HP$

TORQUE (T) is the product of a FORCE (W) in pounds, times a RADIUS (R) in inches from the center of shaft (Lever Arm) and is expressed in Inch Pounds.

T=WR=300 x 1=300 ln. Lbs. T=WR=150 x 2=300 ln. Lbs. If the shaft is revolved, the FORCE (W) is moved through a distance, and WORK is done.

WORK (Ft. Pounds) = W x $\frac{2\pi R}{12}$ x No. of Rev. of Shaft.

When this WORK is done in a specified TIME, POWER is used. POWER (Ft. Pounds per Min.) = W x $\frac{2\pi R}{12}$ x RPM

Since (1) HORSEPOWER = 33,000 Foot Pounds per Minute HORSEPOWER (HP) = W x $\frac{2\pi R}{12}$ x $\frac{RPM}{33,000}$ = $\frac{WxRxRPM}{63,025}$ but TORQUE (Inch Pounds) = FORCE (W) X RADIUS (R) Therefore HORSEPOWER (HP) = $\frac{TORQUE (T) x RPM}{63,025}$

BOSTON GEAR®